
H e l i o s p e c t r a

1 | P a g e

TCP Control Socket

Version 6, Anthony Gilley, 2014-09-19

H e l i o s p e c t r a

2 | P a g e

1. Objective .. 3

2. Basics ... 3

2.1. Connecting and disconnecting ... 3

2.2. Information ... 4

3. Setting and getting lamp intensity per wavelength .. 5

4. Setting and getting lamp intensity per channel (fw 2.1.1 and higher) .. 5

5. Code example .. 7

6. List of useful commands .. 9

Revision history

Revision/Date Author Changes

1 / 2012-10-31 Anthony Gilley First version

2/ 2014-01-30 Anthony Gilley Updated for firmware 2.0.1

3/ 2014-02-25 Anthony Gilley Added code example

4/ 2014-03-11 Anthony Gilley Updated for firmware 2.1.1 with channel control

5/ 2014-05-20 Anthony Gilley Added list of useful commands in chapter 6.

6/2014-09-19 Anthony Gilley Added getEstPowerAndCurrent command and applicability
column in chapter 6.

H e l i o s p e c t r a

3 | P a g e

1. Objective
To provide a reference for controlling Heliospectra lamps via the TCP control socket.

2. Basics
The L4/LX60/RX30 lamps can be controlled either via the pages served by the embedded web server

or by the TCP control socket. The communication via the control socket is a clear text, request /

response and telnet like protocol.

In this document all examples are shown with putty. Putty is a free telnet/ssh client that makes it

easy to test different. Putty can be downloaded here

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

NOTE
Although the control socket uses a telnet like protocol it does not support the handshaking
that initially takes place in the telnet protocol. When using putty connect in raw mode.

The host name is the IP address of the lamp you are connecting to. In this document an
emulator is used which is why the loopback address 127.0.0.1 is used.

2.1. Connecting and disconnecting

Connect to the socket by opening a TCP socket connecting to port 50630 on the lamp. The lamp will
respond with a salutation and newline and a “>” character.

To keep things simple only one connection is allowed at a time to the lamp. If more clients attempt

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

H e l i o s p e c t r a

4 | P a g e

to connect the subsequent clients will receive an error message and the socket will close. The first
client will remain connected.

Inactive connections will timeout after 30 seconds by default. Disconnecting from the socket is done
by sending the bye command to the lamp. The lamp does not send anything in response and just
closes the socket.

2.2. Information

The lamp supports the following commands to get information about the configuration and status of
the lamp.

hello Get basic lamp information including firmware version, serial nr, etc.
getrtc Get the current time in the lamp.
help List all the commands supported by the lamp with a brief description.
getwl Get the list of wavelengths the lamp is equipped with. Values above

1000 indicate the color temperature of white LEDs.
getdevices List low level data regarding the LED Driver cards.
getdevicecount List the number of drivers in the lamp.
getdevicetemperature n Return the temperature of the associated LED plate.

H e l i o s p e c t r a

5 | P a g e

3. Setting and getting lamp intensity per wavelength
Lamp intensity is normally set per wavelength. This can be done either one wavelength at a time, all

wavelengths set to the same intensity value or all wavelengths are set to different values.

NOTE In firmware before version 2.0.1 the intensity range in the following commands is 0-255.

Starting with version 2.0.1 the range is 0-1000 as described below. The firmware version is given in

the response for the hello command on the line starting with “Program version:”

setwlrelpower wl [0-1000] Set the intensity of a single wavelength. The wavelengths must be
among the ones returned by the getwl command. The intensity is
a value from 0 to 1000.
setwlrelpower 400 143 will set the 400nm LEDs to intensity level
143.

setall [0-1000] Set the intensity of all wavelengths. The intensity is a value from 0
to 1000.
setall 0 sets all wavelengths to 0 intensity which is equivalent to
turning the wavelengths off.

setwlsrelpower a b c d … Sets multiple wavelength intensity levels at a time. The intensities
are assigned to the wavelengths in the order they are returned by
the getwl command.
If getwl returns 400 420 450 … then setwlsrelpower 40 50 60 …
will assign intensities 40, 50 and 60 to wavelengths 400, 420 and
450 respectively.

getwlrelpower wl Read the current intensity setting of a specific wavelength.
getwlrelpower 420 would return 50 after the previous command.

getAllRelPower Returns a list of the intensity settings of all wavelengths as
returned by getWl.

4. Setting and getting lamp intensity per channel (fw 2.1.1 and higher)
Starting with fw version 2.1.1 each LED channel can be controlled individually. As described in 3

intensities are normally assigned to all LEDs of the same wavelength. However, to increase the

granularity of control one can also control an individual channel.

One “wavelength” is split into more than one channel if the number of LEDs used is greater than

what a single driver can power (see illustration below).

H e l i o s p e c t r a

6 | P a g e

C1

C2

C3

D3

D3

Drivers C1 and C2 both drive red
LEDs (eg 660nm). Both C1 and C2
can be controlled in unison with the
setwlrelpower command.
Or they can be controlled separately
with the setChannelsRelPower
command.

getChannels Get the list of channels the lamp is equipped with. The response is
a tab separated list of channels. Each channel is labelled with the
wavelength followed by an index value. If several channels have
the same LED type (e.g. 450nm) the channels will be labelled
450_1, 450_2, …

getAllChannelsRelPower Returns the list of intensity values for all channels [0-1000]. The
intensities are listed in the same order as the response to
getChannls.

setChannelsRelPower a b c … Sets multiple channel intensity levels at once. The intensities are
assigned to the wavelengths in the order they are returned by the
getChannels command.
If getChannels returns 400_1 420_1 450_1 … then
setChannelsRelPower 40 50 60 … will assign intensities 40, 50 and
60 to channels 400_1, 420_1 and 450_1 respectively.

getwlrelpower wl Read the current intensity setting of a specific wavelength.
getwlrelpower 420 would return 50 after the previous command.

Note that by setting channels 530_1 and 530_2 to 100 and 0 the overall intensity for the 530

wavelength is 50 (green highlight). The equivalent is done for the two 660 channels (orange

highlight).

H e l i o s p e c t r a

7 | P a g e

5. Code example
The following is a simple script written in Python 2.7 showing how to interact with a lamp over the

TCP socket. The script allows the following type of interaction

The source for the script is listed on the next page.

H e l i o s p e c t r a

8 | P a g e

socketdemo.py – Heliospectra, Anthony Gilley, 20140225

from telnetlib import Telnet

from sys import *

from getopt import *

eol = "\r\n"

def connect(host):

 # Connect to the lamp on port 50630

 tn = Telnet(host, 50630)

 # Get and discard the first salutation

 readresponse(tn)

 return tn

def disconnect(tn):

 # Disconnect from the socket.

 command = "bye"

 sendcommand(tn, command, False)

 tn.close()

def setwlrelpwr(tn, wl, pwr):

 # Set the power for the given wavelength

 command = "setwlrelpower " + wl + " " + pwr

 sendcommand(tn, command)

 # Read back the power value

 command = "getwlrelpower " + wl

 sendcommand(tn, command)

def setchannelrelpwr(tn, ch, pwr):

 # Set the power for the given channel

 command = "getchannels"

 chls = sendcommand(tn, command).split()

 intensities = sendcommand(tn, "getallchannelsrelpower").split()

 if ch in chls:

 intensities[chls.index(ch)] = pwr

 command = "setchannelsrelpower " + ' '.join(intensities)

 sendcommand(tn, command)

 sendcommand(tn, "getallchannelsrelpower")

 else:

 print ch + " not found in lamp"

def setall(tn, pwr):

 # Set the power for the given wavelength

 command = "setall " + pwr

 sendcommand(tn, command)

 # Read back the power values

 command = "getallrelpower"

 sendcommand(tn, command)

def getwl(tn):

 # Get the wavelengths

 command = "getwl"

 sendcommand(tn, command)

 # Read back the power values

 command = "getallrelpower"

 sendcommand(tn, command)

def getchannels(tn):

 # Get the wavelengths

 command = "getchannels"

 sendcommand(tn, command)

 # Read back the power values

 command = "getallchannelsrelpower"

 sendcommand(tn, command)

def sendcommand(tn, command, read = True):

 r=''

 print "-> " + command

 tn.write(command + eol)

 if(read):

 r=readresponse(tn)

 if r.startswith('OK'):

 r = r[3:].strip()

 return r

def readresponse(tn):

 r = tn.read_until(">")[:-3]

 print "<- " + r

 return r

Decode the command line arguments and issue the command

if len(argv)>0:

 opts, args = getopt(argv[1:], '', ['cw=','pwr=','host='])

 for opt, arg in opts:

 if opt=='--cw':

 cw = arg

 if opt=='--pwr':

 pwr = arg

 if opt=='--host':

 host = arg

tn = connect(host)

if(cw=='all'):

 print "Set intensity for all wavelengths to " + pwr

 setall(tn, pwr)

elif(cw=='?'):

 print "Retrieve wavelengths, channels and intensities"

 getwl(tn)

 getchannels(tn)

elif('_' in cw):

 print "Set channel " + cw + " to " + pwr

 setchannelrelpwr(tn, cw, pwr)

else:

 print "Set " + cw + "nm/K LEDs to " + pwr

 setwlrelpwr(tn, cw, pwr)

disconnect(tn)

H e l i o s p e c t r a

9 | P a g e

6. List of useful commands
Command Explanation Applicability Example

bye Close the connection with the lamp. L4, LX60, RX30 bye

getDeviceCount The number of connected LED devices in the lamp. L4, LX60, RX30 getDeviceCount

getDevices The list of connected devices with status information. L4 getDevices

getWl The list of available wavelengths. L4, LX60, RX30 getWl

getWlsMaxPower Max electrical power value (deciwatts) for available wavelengths in getWl order. L4, LX60, RX30 getWlsMaxPower

getDeviceTemperature The temperature of a LED device. L4, LX60, RX30 getDeviceTemperature 1

getDeviceInfo Detailed information about a specific LED device. L4 getDeviceInfo 1

getDeviceInputVoltage Input voltage of a device. L4 getDeviceInputVoltage 1

getEstPowerAndCurrent Estimated power and current consumption LX60, RX30 getEstPowerAndCurrent

getWlRelPower Returns relative setting [0-1000] of a wavelength. L4, LX60, RX30 getWlRelPower 660

getAllRelPower Returns relative setting [0-1000] of all wavelengths. L4, LX60, RX30 getAllRelPower

setWlsRelPower Provide settings for multiple wavelengths [0-1000]*n. Provided in getWL order. L4, LX60, RX30 setWlsRelPower 850 200

setWlRelPower Set wavelength to relative value [0-1000]. none L4, LX60, RX30 setWlRelPower 660 300

setAll Set all wavelengths to the same relative value [0-1000]. none L4, LX60, RX30 setAll 1000

setTimeout Set the connection timeout value [10-600] seconds. The connection will close after an
inactive timeout period.

L4, LX60, RX30 setTimeout 60

getTimeout Returns the connection timeout value. L4, LX60, RX30 getTimeout

help The entire list of commands. L4, LX60, RX30 help

hello Lamp identification and firmware information. L4, LX60, RX30 hello

getUptime The uptime of the lamp in seconds. L4, LX60, RX30 getUptime

getmac Returns the MAC address of the lamp. L4, LX60, RX30 getmac

setBeep Turn the beeping on and off. L4 setBeep 0

getBeep Returns the status of the beep. L4 getBeep

mute Mutes audible warning signal until next reboot. L4 mute

reboot Restart the CPU in the lamp. L4, LX60, RX30 reboot

